12/(2x^2+2x-1)=12

Simple and best practice solution for 12/(2x^2+2x-1)=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12/(2x^2+2x-1)=12 equation:



12/(2x^2+2x-1)=12
We move all terms to the left:
12/(2x^2+2x-1)-(12)=0
Domain of the equation: (2x^2+2x-1)!=0
We move all terms containing x to the left, all other terms to the right
2x^2+2x!=1
x∈R
We multiply all the terms by the denominator
-12*(2x^2+2x-1)+12=0
We multiply parentheses
-24x^2-24x+12+12=0
We add all the numbers together, and all the variables
-24x^2-24x+24=0
a = -24; b = -24; c = +24;
Δ = b2-4ac
Δ = -242-4·(-24)·24
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24\sqrt{5}}{2*-24}=\frac{24-24\sqrt{5}}{-48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24\sqrt{5}}{2*-24}=\frac{24+24\sqrt{5}}{-48} $

See similar equations:

| 12/(2x^2+x-1)=12 | | (2x-5)(x+1)=-12x | | 3(4x-1)+5x=31 | | 13+5m-3m=6 | | 0.116=10^x | | 13x−28=24 | | 5/(2x^2+x-1)=x-3 | | 5/(2x^2+x-1=x-3 | | 34=b+68 | | -7a-8+5a=-22 | | (x+3)(4x+5)=4x(x-4)-5 | | -w+129=264 | | 2x+7-6x-8=15 | | 36=176-y | | -w+237=98 | | -u+44=158 | | 2/4n=4/6 | | 200=-u+70 | | 2x-6+5x=1 | | x+-4=5x-12 | | 8e+3.3=11.3 | | 5(3x+4)=6x-9 | | 12/(x^2+6)=138 | | 4+x/8.96=11 | | 2/5x+19=15 | | -6n=-3n-2n | | 82=4-6/7y | | -2x+4x-6=30 | | -6x+7=76 | | 12x-1/(x^2+6)=138x | | x4+19=19 | | -2/5=4/3y+2 |

Equations solver categories